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This article is a continuation of Are your industrial data science models field ready? -Part 1: How Low is Too Low 

for R2. If you have not read it, please go to https://deepiq.com/resources.php.  

In the last section, we talked about how to decide the success criteria for your models. Now, let us look at how 

to build models that will match up to their lab promises when transitioning to the field. 

It is important to test the generalizability of your models by using techniques like cross validation. This is 

where we train our model on a portion of the data and use the remaining portion to check the model’s 

performance on the unseen data. This is a well-known idea, and you can refer to any machine learning 

book for details. However, there are some nuances to this approach that are not apparent. I will start 

this section with a real-world example to help ground the discussion.   

 

Our team was tasked to build a diagnostic model for industrial equipment to recognize faults before the 

tool was deployed on a new job. I was part of a large and incredibly talented team of data scientists. The 

fault data was limited, and we used robust techniques, including cross validation, to ensure the models 

are generalizable. We obtained some exciting results and deployed the model on the field. 

Unfortunately, it never worked in the real world. There was not a single instance where it could correctly 

identify a faulty equipment and not a single instance where instances flagged by it corresponded to 

faults. Like the lead character in the movie A Beautiful Mind￼, we saw patterns that did not exist. This 

created a poor reputation for machine learning as a useful technology at the company. Luckily, most of 

us moved on from this project without significant career damage. Years later, I mulled about what went 

wrong and below is the explanation. 

 

Real World Example 

Why This Article? 
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Let us start with an experiment. Here is a dataset 

(http://deepiq.com/docs/dataset1.csv) that pertains to 

figuring out if a pipeline has a crack in any cross section of 

interest. We used a non-destructive evaluation equipment 

with four different sensors that take measurements from each 

cross-section of interest along the pipe.  

All the historic data was persisted to a PI Historian and the field 

engineer used the PI Historian’s Asset Framework Expressions 

to calculate the average value of a sensor from each cross 

section of interest, and saved as “sensor i-tag one” in the 

dataset. 

We are charged with building a model to diagnose cracks based 

on these sensor readings. So, we must build a model to classify 

each area into a “no crack” (label one) and “crack” (label zero) 

after dividing the data into train and test. I request you to read this section before attempting the 

exercise because there is a gotcha element to it. 

I used the following approach. 

• Split the data into 80%-20% for train and validation datasets, making sure both positive and 

negative sample ratios are preserved in both sets. 

• Build a decision tree using the train set and validate it on the validation set 

I ended with a validation error of 0.55 and a train error of 0. The model is over trained and is performing 

worse than a random number generator on the test set. Bad results. Luckily, the field engineer was a 

believer in the promise of machine learning, and he was open to deriving additional statistical metrics 

from the raw measurements recorded in PI. Using his domain knowledge, he used PI Expressions to 

derive additional features based on the raw sensor measurements. Each sensor collected around 1,000 

measurements from a cross-section of interest and literally there are quadrillion ways of calculating 

features. So, we focused on an iterative model development. He extracted a set of possible features and 

I ran my machine learning pipeline on the features to calculate performance metrics. Luckily after a few 

iterations, we found a fantastic model with a training error of 0 and test error of only 0.15. The final set 

of all features we iterated through is in the dataset, http://deepiq.com/docs/dataset2.csv and my best 

results were obtained for the following features:  

• Sensor 1 –Tag 2 

• Sensor 2 –Tag 3  

• Sensor 3 –Tag 1 

• Sensor 4 –Tag 3  

We found a great candidate that is viable for field deployment with some nice teamwork! 

Here is the caveat. All sensor readings and labels in the dataset were generated using a random number 

generator. In other words, there was no predictive value in any of the readings. At this point, if you want 

to experiment with this data, please go ahead. I did not want to waste your time on random data 

exploration. The model I found is predicting random numbers. 

Figure 1: Sensor readings from a cross section of 
interest 

A Small Contrived Example 
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This is a contrived example and based on a small number of data points. It is easy to see where I messed 

up. We have only 20 points in the test data set and a random label generator has more than 0.5% chance 

of having higher than 80% accuracy and more than a 2% chance of having higher than 75% accuracy on 

test data. To check if this issue occurs in slightly larger data sets, let us consider a binary classification 

problem where both classes are equally likely, and features have zero discrimination capability. Now, let 

us calculate the probability that a model which assigns label randomly has more than 70% accuracy on 

the test data. The probability falls quickly with an increase in the size of the test data set and is only 

0.13% for datasets of size 60. That is good news. You can still build robust models on small datasets.  

 

 

Figure 2 Probability of random label generating model having more than 70% accuracy 

Here is the catch though. Consider your stand machine learning pipeline (Figure 3). The steps are: 

1. Data Engineering: In standard industrial analytic use cases, we will need to do significant data 

preprocessing to build analytic ready datasets. For example, you might have to interpolate your 

time series data from different sources to map them to a single frequency using statistical 

techniques. We might use parameterized physics-based equations to derive additional signals 

from raw measurements based on domain knowledge. Other standard steps include normalizing 

the data, doing dimensionality reduction, and performing data cleansing operations to improve 

feature quality (such as data imputation to handle missing data, smoothing to handle noise, and 

outlier filtering to handle faulty readings). Some of these steps might be bundled into our 

hyperparameter tuning exercise and checked against a final test set to obtain an unbiased 

estimate of the generalization error. However, more often than not, some of the data 

preprocessing steps are handled outside the model building loop and therefore not locked away 

from a final check against a test dataset. 

2. Training Algorithm: Using cost minimization functions like back propagation (for neural 

networks) or least squares minimization (for regression), this step finds the model with the 

lowest error on the training data set. 
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3. Model Optimization: The model optimization component deals with finding the right model 

(decision tree vs. deep learning model, etc.) and the right hyper-parameters (no of layers in your 

neural network or number of trees in your random forest, etc.), to maximize the performance 

on the test data set. In this step, we enumerate multiple models to find the model that has the 

lowest validation error on the validation dataset (or using cross-validation). Techniques like grid 

search that exhaustively enumerate different combinations of parameters or smart search 

algorithms that rely on some greedy heuristics to prune the search are used to find the model 

with the best performance. AutoML techniques on standard platforms provide an abstraction 

layer for this step so you do not need to bookkeep the cumbersome search process. 

 

Figure 3: Model building flowchart 

Now, count the number of model trials you are attempting due to the combined iterations of data 

engineering, model type search and hyper parameter tuning exercise. If these trials add up to a million, 

then even with a 60-size test dataset where we previously computed the probability of a completely 

random model producing more than 70% accuracy as 0.13%, the expected number of models with at 

least 70% accuracy is more than one. If you include the fact that automated techniques like AutoML use 

a smart search algorithm that use a greedy hill climbing exercise to minimize validation error, the 

problem becomes worse. 

You might argue that you always leave a test dataset untouched by the above optimization cycles where 

you do a final check of your model robustness. While you are likely keeping the test run outside the hyper 

parameter optimization step, are you adhering to the discipline of keeping the test run outside the data 

engineering loop too? Many practitioners do not, particularly in industrial use cases, where there is 

significant domain knowledge and cleansing operations that are involved in building analytic ready 

datasets. That is, if you revisit your data engineering cycle when your test score is low, you will still run 

the risk of contaminating test performance scores because of excessive data engineering. 

 

 

 

     Why is this more important for industrial data problems? 
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This phenomenon occurs more often than you might think in industrial data science because of the 

following reasons: 

1. Often in industrial data science problems, you might have large datasets but only a small set of 

labelled samples to train your models on. For example, your compressor might be generating 

hundreds of measurements every second but may have failed only once in the last two years. In 

the above example, the number of cross sections of interest that have data to train on is only 

100. 

2. Within this small set of labelled samples, positive cases like faults are significantly smaller than 

the normal cases. So, you end up with a biased dataset where most labels are same and your 

models learn that by predicting a constant value of the most frequent label, it will end up with 

high accuracy. For example, if 95% of our cross sections of interest do not have cracks, picking 

“no crack” as the predicted label always will have an error rate of only 5%. Since the baseline 

accuracy itself is high, to test the model generalizability, we are trying to optimize a needle in a 

haystack. 

3. In addition to the lack of labelled examples, in industrial use cases, there is significant data 

engineering that is a precursor to the machine learning workflow. In machine learning problems 

such as computer vision, deep learning models directly operate on the raw pixel data and 

intrinsically compute the features required by the model. Contrast this with a standard industrial 

data science problem. Using parameterized physics or domain equations, computing statistics of 

raw features, decomposing signal to frequency components, smoothing, interpolating data to 

change scale etc are routine procedures that are usually handled outside the model optimization 

loop. These provide a high degree of freedom to data scientists even before machine learning 

processing with AutoML tools. In many industrial analytic problems, problem formation and data 

engineering remain the secret sauce of success. 

The advent of enormous computation power that allows you to iterate through millions of data 

engineering cycles in an iterative process as an input to your AutoML or other model search processes, 

creates the artefacts that we saw earlier. When your model fails, a natural response is to engineer better 

data. This is a useful exercise. However, as you try out hundreds of pre-processing steps, hundreds of 

models and hundreds of hyper parameters with automated tools, the danger of the phenomenon that 

you observed in the last problem becomes real. 

If your labelled samples are small and generating your dataset involves significant data engineering that 

is outside your model test performance runs, you might inadvertently overhype the quality of your 

resultant model. If you are doing considerable data engineering as a pre-processing step to your machine 

learning pipelines, the responsibility of making sure that the number of combinations and permutations 

you throw at your machine learning pipeline does not undermine the validity of your results stays with 

you.  You will need an application that treats the end to end pipeline from connecting to your raw 

sources to producing the final insights as one holistic process that is handled within your model 

optimization cycle. 

 

 

 

In a typical industrial data science workflow, you will have to put in significant work to build machine 

learning ready datasets. Your analytic workflows will have a large pipeline where model building is usually 

How DataStudio Helps 
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the last and easiest step. Typically, your AutoML/data science tools stay out of the first phase of data 

engineering, making controlled optimization of the entire analytic process difficult.  

DataStudio is the first self-service analytics application that gives you the ability to connect directly to 

your IOT and geospatial sources and perform highly scalable feature computation, feature ranking, 

model selection and hyper parameter search using a simple self service application. Using our hyper 

parameter optimization capability, you can easily iterate through multiple data engineering and model 

parameters in a single optimization cycle, while keeping a fine-grained control on the risks of over 

optimizing the model that can damage its generalizability.  

Figure 4 shows a workflow that we built to explore machine learning approaches to detect anomalous 

behavior in a field pump operation to prevent catastrophic failures. The actual details of our workflow 

are available in this video https://deepiq.com/docs/ml.mp4 but we provide a overview to showcase how 

feature computation and model building operate together in an industrial workflow. In this workflow, 

first we select a set of tags that we consider relevant to this problem and pull the data from PI historian. 

Then, we remove outliers to account for any malfunctioning sensors. We use a noise filter to remove 

high frequency noise. Then, we use an imputation algorithm to fill out missing data with a statistical 

algorithm. All these are parameterizable components that you can experiment with to give you the best 

result. 

Finally, in the bottom part of the workflow, the actual machine learning model building process beings. 

We merge the PI data with maintenance data from SAP to get labelled examples and use a grid search 

algorithm to find the best possible Random Forest model. 
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Figure 4: Ingestion and Preparation of Time-Series Data for machine learning model building  

This single workflow goes all the way from connecting to your IOT sources, to generating finished models 

and can be optimized for best generalization metrics. Now that we saw how to build good models, in the 

final part of our article, we will talk about how to combine your high performing models to create the 

“best of the best” model. 


